
Naked Objects' Sister Projects 1.0: Developers Guide
aka Star Objects

Version 0.1

Copyright © 2009 Dan Haywood

Permission is granted to make and distribute verbatim copies of this manual provided
that the copyright notice and this permission notice are preserved on all copies.

iii

Preface .. v
I. Building from Source .. 1

1. Prerequisite Software .. 3
1.1. Command Line Software .. 3

1.2. IDE ... 3

2. Manual Install of Maven Artifacts .. 5
2.1. JIMI Jar File .. 5

3. Building Projects from Source .. 7
3.1. Source Tree Hierarchy ... 7

II. Contributing Changes ... 9

4. Coding Standards .. 11
4.1. Checkstyle ... 11

4.2. PMD ... 13

4.3. Code Coverage (Cobertura and Emma) .. 15

4.4. Eclipse Code Style ... 17

5. Templates and Utilities .. 21
5.1. Eclipse Java Editor Templates ... 21

6. Using the Corporate POM .. 23
6.1. Defining the Corporate POM .. 23

6.2. Defining the Corporate Repository .. 24

7. Writing DocBook Documentation .. 25
7.1. Source Code Repository ... 25

7.2. Editing the Documentation (using XMLMind) ... 26

7.3. Build the Documentation .. 28

7.4. Deploying the Documentation ... 29

8. Writing Site Documentation .. 31
8.1. Overview ... 31

8.2. Source Code Repository ... 32

8.3. Customizing the Site Descriptor (site.xml) ... 32

8.4. Writing Additional Site Content .. 38

8.5. Generated Reports .. 40

8.6. Checking the Site by Deploying it Locally ... 41

III. Release Process ... 43

9. Deploying a Code Snapshot ... 45
9.1. Prerequisites ... 45

9.2. Deploying a Snapshot Manually .. 45

10. Deploying a Code Release ... 47
10.1. Pre-release Check List .. 47

10.2. Releasing the Main Module .. 48

10.3. Support Module .. 49

10.4. Deploy Site .. 49

11. Deploying the Site ... 51
11.1. Prerequisites ... 51

11.2. Deploying Remotely to Sourceforge .. 51

IV. Building and Deploying the Corporate Artifacts ... 53

12. The Corporate POM ... 55
12.1. Source Code Repository ... 55

12.2. Build the Corporate POM ... 55

Naked Objects' Sister Projects 1.0: Developers Guide Contents

iv

12.3. Deploy the Corporate POM .. 56

12.4. Using the Corporate POM .. 57

13. The Maven Skin .. 59
13.1. Source Code Repository ... 59

13.2. Build the Skin .. 59

13.3. Deploying the Skin ... 60

13.4. Using the Skin ... 61

14. The 'Main' Module (Docs & Site) ... 63
14.1. Source Code Repository ... 63

14.2. Building the Documentation & Site ... 63

14.3. Deploying the Site .. 64

V. Appendices .. 65

A. Deployment Prerequisites ... 67
A.1. How profile-based distribution management has been designed 67

A.2. Prerequisites for Deploying Corporate Artifacts (from the umbrella project) 69

A.3. Prequisites for Deploying Sister Project Artifacts .. 69

v

Preface
Star Objects is an umbrella project for the various sister projects for the Naked Objects framework. Its

purpose is to :

• describe the development environment common to all sister projects:

• how to set up the development environment;

• how to write site and docbook documentation

• define standards common to all sister projects:

a Maven corporate POM that defines common third party dependencies, configuration of build plugins

and so on;

• provide a Maven site skin to provide a common look-n-feel of the Maven sites created for the sister

projects.

This developers guide breaks into several parts:

• the first part is for those just wanting to build the sister projects from source, without necessarily

contributing any changes back to the projects. As such, it is quite short;

• the second part is for those who are intending to contribute changes back. It deals with such matters

as setting up the development environment, explaining source code structure, how to use the corporate

POM, writing documentation and site documentation;

• the third part is for use only by those maintaining this (umbrella) project. It deals with releasing the

corporate POM and Maven site skin.

Both Naked Objects and all its sister projects are currently hosted on Sourceforge, under Apache Software

License v2.

http://starobjects.sourceforge.net
http://nakedobjects.org
http://maven.apache.org
http://sourceforge.net
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html

1

Part I

Building from Source

This part of the developers guide describes how to build any of the sister projects from source, for example,

just to get a better understanding of how the project works, or because your organization requires any

open source projects to be re-built in-house.

This part of the guide also describes the prerequisite software that needs to be installed prior to building

from source.

If you are looking to contribute to any of the sister projects, the steps in this part of the guide also apply,

but see also Part II, “Contributing Changes” for additional steps.

3

Chapter 1

Prerequisite Software

This chapter describes the (Java) software needed to build the sister projects. Follow the steps in this

chapter if you want to build the sister projects from source, or want to contribute back to the sister projects.

For the most part the sister projects are implemented using Java. Some sister projects may have their own

additional prerequisites; consult their documentation.

1.1. Command Line Software

Install the following software (you may well already have these installed):

• a Subversion client;

• Java 5 or 6 and setup the JAVA_HOME environment variable;

• Maven 2.1.0 or later, setup the MAVEN_HOME environment variable.

Add Subversion's svn executable and Maven's mvn executable to your PATH environment variable.

1.2. IDE

Although it is possible to develop from the command line tools, if you are looking to develop on or

contribute back to any of the sister projects then you should set up a development environment.

Any IDE that supports Maven will do; we use Eclipse along with a number of plugins:

• Install Eclipse 3.5 (Java or JEE edition).

• the m2eclipse plugin, for Maven support

Normally Eclipse uses its own .project and .classpath files to (respectively) define the layout of

the project and the classpath for a project. With Maven however this same information is available in the

pom.xml. What m2eclipse does is generate the .project and .classpath files on-the-fly, and uses

http://subversion.tigris.org
http://subversion.tigris.org/
http://java.sun.com
http://maven.apache.org
http://eclipse.org
http://m2eclipse.codehaus.org

Prerequisite Software IDE

4

Eclipse's own "Classpath Container" to reference Maven modules in the local repository. m2eclipse

will also download any referenced modules from remote repositories into the local repository.

• the Subclipse plugin, for Subversion support

• the eclipse-cs plugin, for Checkstyle support

• the PMD for eclipse plugin, for PMD support

• the EclEmma plugin, for Emma code coverage support

Install each of these from their respective update sites.

http://subclipse.tigris.org
http://eclipse-cs.sourceforge.net
http://checkstyle.sourceforge.net
http://pmd.sourceforge.net/eclipse
http://pmd.sourceforge.net
http://www.eclemma.org/
http://emma.sourceforge.net

5

Chapter 2

Manual Install of Maven Artifacts

This chapter describes how to install some artifacts into your local Maven repository. Follow the steps in

this chapter if you want to build the sister projects from source, or want to contribute back to the sister

projects.

Generally speaking all Maven artifacts are automatically downloads from the Maven central repo (though

note that all the sister projects also release to the Sister projects Maven repo). However, some artifacts

must be manually installed or built, either because they haven't been formally released or because there

are licensing restrictions preventing them from being hosted in the repository. These must therefore be

downloaded and manually installed into your local repository (~/.m2/repository) .

2.1. JIMI Jar File

The sister projects currently use the JIMI jar to generate documentation. Therefore:

• Download the jimi jar file. You’ll find it within the JimiProClasses.zip downloadable from the

Jimi project page.

• Install into your local Maven repository using:

mvn install:install-file \

 -D groupId=com.java \

 -D artifactId=jimi \

 -D version=1.0 \

 -D packaging=jar \

 -D file=/path/to/jimi.jar

http://repo1.maven.org/maven2/
http://starobjects.sourceforge.net/m2-repo
http://java.sun.com/products/jimi/

7

Chapter 3

Building Projects from Source

This chapter describes the general organization of the source code in any sister project, and provides

general guidance on how to build sister projects from source. Follow the steps in this chapter if you want

to build the sister projects from source, or want to contribute back to the sister projects.

So far as possible, the codebase for each sister project follows the same basic directory structure, though

the modules in each and their implementation will vary of course. The instructions given here are general

a guide, but you should also consult the developers' guides for each sister project for any additional details,

and any artifacts that fall outside the standard directory structure. (For example, the Star Objects project

itself supplies the corporate POM and a site template, the steps for which documented in Part IV, “Building

and Deploying the Corporate Artifacts” of part three of this guide.)

3.1. Source Tree Hierarchy

Although the code in every sister project is different, they all (try to) follow the same general hierarchy:

trunk/

 main/ # main module, aggregates submodules

 pom.xml

 applib/ # application library (if any)

 documentation/ # users' and developers' guides

 xxx/ #

 yyy/ # modules specific to the sister project

 zzz/ #

 support/ # optional, built after main

 pom.xml

 release/ # a consistent stack of dependencies for this release

 archetype/ # quick-start archetype (if any)

 testapp/ # optional, not released

 pom.xml

Building Projects from Source The 'main' module

8

The 'main' module

The main module is a parent that aggregates the various submodules that make up the sister project:

• the applib (if any) contains the application library. For example, Restful Objects defines an applib for

client-side applications calling the RESTful web service;

• the documentation, holding users' and developers' guides;

• any further submodules that make up the application. For example, Restful Objects has a viewer module;

JPA Objects has a module for an object store implementation.

The steps for building the main module for most sister projects will amount to little more than:

cd trunk/main

mvn clean install

If you want to build a single module, then use the '-pl' flag. For example:

cd trunk/main

mvn clean install -pl documentation

just builds the documentation.

Alternatively, in general it's also possible to cd into the appropriate directory and build from there:

cd trunk/main/documentation

mvn clean install

The 'support' module

The support module, if it exists, is another parent that is built after the main module. It aggregates

submodules that to help developers use the sister project:

• a release artifact, which defines (in <dependencyManagement>) a consistent set of artifacts. This can

be used as a parent (or at least documents the set of dependencies that have been tested together);

• an archetype artifact, which can be used for quick-starts. The archetype should be designed to work

with the Naked Objects "claims" example. In general the modules created by running the archetype

should use the release artifact.

The steps for building the support module for most sister projects will again amount to little more than:

cd trunk/main

mvn clean install

The reason that the support module is built after the main module is because it requires the main's

submodules to be have released.

The 'testapp' module

The testapp module, if it exists, is used for testing. It should be built using the archetype, if there is one,

and/or should use the release artifact as its parent.

http://restfulobjects.sourceforge.net

9

Part II

Contributing Changes

If you are looking to contribute to any of the sister projects, then this part of the guide offers guidance

on how to contribute changes. It builds on the first part, Part I, “Building from Source”, and assumes that

you have installed any prerequisite software

11

Chapter 4

Coding Standards

This chapter describes how we enforce coding standards for sister projects. Follow the steps in this

chapter if you intend to contribute back to the sister projects. There's no need to perform these steps if

you are just building the sister projects from source.

All the sister projects use Checkstyle and PMD to enforce coding standards, and use Cobertura and Emma

to capture code coverage. Each of these tools has integration with both Maven and Eclipse. In addition,

a number of Eclipse config files define formatting and clean-up standards that are complementary to the

Checkstyle standards.

All of the config files described here are checked into Subversion under trunk/main/standards/src/main/

resources. To ease distribution they are released as part of the Star Objects sourceforge website. The

config files are not versioned (other than by Subversion itself).

4.1. Checkstyle

Checkstyle is a powerful tool for enforcing coding standards and detecting certain classes of likely errors.

The checkstyle definition project is derived from Sun's standards, with a number of modifications, and

can be accessed from the Star Objects sourceforge website.

Checkstyle integrates with both Maven and with Eclipse.

Maven Plugin

The corporate POM (see Part IV, “Building and Deploying the Corporate Artifacts”) automatically

includes the Maven checkstyle plugin:

<!-- quality checks: checkstyle -->

<plugin>

 <groupId>org.apache.maven.plugins</groupId>

checkstyle.sourceforge.net
http://pmd.sourceforge.net
http://cobertura.sourceforge.net
http://emma.sourceforge.net
https://starobjects.svn.sourceforge.net/svnroot/starobjects/trunk/main/standards/src/main/resources
https://starobjects.svn.sourceforge.net/svnroot/starobjects/trunk/main/standards/src/main/resources
http://starobjects.sourceforge.net
checkstyle.sourceforge.net
http://starobjects.sourceforge.net
http://maven.apache.org/plugins/maven-checkstyle-plugin/

Coding Standards Eclipse Plugin

12

 <artifactId>maven-checkstyle-plugin</artifactId>

 <configuration>

 <configLocation>

 http://starobjects.sourceforge.net/m2-site/main/standards/resources/checkstyle.xml

 </configLocation>

 ...

 </configuration>

</plugin>

This plugin is not bound to any Maven lifecycle phase, and is not intended to be run other than as a report

within mvn site. In particular, note that the configuration is only defined in the <reporting> section,

so it isn't possible to run using mvn checkstyle:checkstyle. For more immediate feedback, use the

Eclipse plugin, below.

Eclipse Plugin

The eclipse-cs plugin allows Checkstyle violations to be flagged as warnings or errors within the

Problems view of the Eclipse IDE. To associate eclipse-cs with the Checkstyle config file, use Windows

> Preferences, and specify the config file as http://starobjects.sourceforge.net/m2-site/main/standards/

resources/checkstyle.xml:

TODO: the screenshot is out of date

According to eclipse-cs' documentation, it is meant to integrate with m2eclipse and transparently pick up

any Maven configuration of mvn-checkstyle-plugin. This doesn't seem to work for me, though.

You may then need to enable CheckStyle for each project as required, using the context menu in Package

Explorer. CheckStyle violations show up in the Problems view:

http://eclipse-cs.sourceforge.net
???
???

Coding Standards PMD

Naked Objects' Sister Projects 1.0:
Developers Guide (0.1) 13

These violations are dynamic updated, so fixing any problem should automatically remove the violation

from the problems view. A quick fix short cut (ctrl+1) is available for some of these.

4.2. PMD

PMD is another static analysis tool that checks for problematic code (possible bugs, dead code, suboptimal

code and so on). As for Checkstyle, all the sister projects share a common PMD definition file, this one

adapted from Apache group's own PMD definitions.

PMD integrates with both Maven and with Eclipse.

Maven Plugin

The corporate POM (see Part IV, “Building and Deploying the Corporate Artifacts”) automatically

includes the Maven PMD plugin:

<!-- quality checks: pmd -->

<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-pmd-plugin</artifactId>

 <configuration>

 <targetJdk>${compileTarget}</targetJdk>

 <rulesets>

 <ruleset>

 http://starobjects.sourceforge.net/m2-site/main/standards/resources/pmd.xml

 </ruleset>

 </rulesets>

 ...

 </configuration>

</plugin>

As for Checkstyle, this plugin is not bound to any Maven lifecycle phase, and is not intended to be run

other than as a report within mvn site. In particular, note that the configuration is only defined in the

<reporting> section, so it isn't possible to run using mvn pmd:pmd. For more immediate feedback,

use the Eclipse plugin, below.

Eclipse Plugin

The PMD for eclipse plugin allows PMD violations to be flagged as warnings or errors within the Problems

view of the Eclipse IDE. The plugin also provides a custom "PMD" perspective which also lists all

violations. To associate PMD for Eclipse with the PMD config file, use Windows > Preferences:

http://pmd.sourceforge.net
http://maven.apache.org/plugins/maven-pmd-plugin/
http://pmd.sourceforge.net/eclipse

Coding Standards Eclipse Plugin

14

First, use "Clear All" to remove the default rule set. Then, use "Import rule set" and specify the pmd.xml

file. Unlike the Checkstyle plugin, this must be a local file so downloaded from the Star Objects website;

the file to use is http://starobjects.sourceforge.net/m2-site/main/standards/resources/pmd.xml.

Also unlike the Checkstyle plugin, PMD violations are not continually updated against the code (it is

not implemented as an Eclipse builder). To perform a check, you must use the context menu in Package

Explorer and then use PMD > Check Code with PMD. This will switch into the PMD perspective; the

Violations view will indicate any code that needs attention:

Alternatively, you can switch back to the Java view; any PMD violations show up in the Problems view:

http://starobjects.sourceforge.net/m2-site/main/standards/resources/pmd.xml

Coding Standards Code Coverage (Cobertura and Emma)

Naked Objects' Sister Projects 1.0:
Developers Guide (0.1) 15

Once violations are fixed, the Check must be performed again to refresh both of these views.

Note, to prevent PMD from switching to its own perspective, use Windows > Preferences > PMD and

then disable "Show PMD Perspective when checking code".

4.3. Code Coverage (Cobertura and Emma)

Code coverage of unit testing is provided using Cobertura for Maven, and using Emma for Eclipse.

Although there is an Eclipse plugin for Cobertura, it has not been maintained and no longer runs on the

latest versions of Eclipse. Conversely, although there is a Maven plugin for Emma, the Cobertura plugin

gives reports that are more easily understood.

Maven Plugin (Cobertura)

The corporate POM (see Part IV, “Building and Deploying the Corporate Artifacts”) automatically

includes the Maven Cobertura plugin:

<!-- quality checks: pmd -->

<plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>cobertura-maven-plugin</artifactId>

 <version>2.3</version>

 <inherited>true</inherited>

</plugin>

As for Checkstyle and PMD, this plugin is not bound to any Maven lifecycle phase, and is not intended

to be run other than as a report within mvn site. For more immediate feedback, use the Emma Eclipse

plugin, below.

Eclipse Plugin (Emma)

The EclEmma Eclipse plugin offers transparent code coverage directly within the Eclipse IDE. Rather

than run the tests using Run > Run As > JUnit Test, instead use Coverage > Coverage As > JUnit Test.

This will instrument the code and then provide a coverage view and highlights in the editor to show which

code has been exercised.

The coverage view looks like:

http://mojo.codehaus.org/cobertura-maven-plugin
http://www.eclemma.org/

Coding Standards Eclipse Plugin (Emma)

16

The highlighted editor looks like:

Use the menu item on the Coverage View to select between manage the history of coverage runs (selecting

none / deleting all removes the highlights on the editor).

To change what code is instrumented, use Coverage > Coverage ... :

Coding Standards Eclipse Code Style

Naked Objects' Sister Projects 1.0:
Developers Guide (0.1) 17

4.4. Eclipse Code Style

Eclipse provides a number of interrelated features to help write code consistent with defined standards.

Formatter

The Eclipse formatter config file (accessible here) defines a set of formatting standards consistent with the

Checkstyle checks (see Section 4.1, “Checkstyle”). The config file should be imported using Windows

> Preferences > Java > Code Style > Formatter:

http://starobjects.sourceforge.net/m2-site/main/standards/resources/eclipse-java-formatter.xml

Coding Standards Cleanup

18

To run the formatter, use Source > Format. Alternatively, you can use Cleanup, below, which performs

formatting and a number of other checks too.

Cleanup

The Eclipse cleanup config file (accessible here) defines a set of operations aimed at removing simple

problems with the code, again consistent with the Checkstyle checks (see Section 4.1, “Checkstyle”).

These include running the formatter, above. The config file should be imported using Windows >

Preferences > Java > Code Style > Cleanup:

http://starobjects.sourceforge.net/m2-site/main/standards/resources/eclipse-java-cleanup.xml

Coding Standards Save Actions

Naked Objects' Sister Projects 1.0:
Developers Guide (0.1) 19

The cleanup wizard can be run on an adhoc basis using Source > Cleanup.

Save Actions

While the formatter and cleanup can be run manually, it is also possible to run the formatter whenever

code is saved.

Navigate to Windows > Preferences > Save > Actions and enable:

Coding Standards Save Actions

20

From the dialog it is also possible to automatically perform the same actions as the cleanup (the Configure

button). However, it doesn't seem possible to reuse the configuration definition file. To avoid violating

the DRY principle, so the recommendation is just to enable the simple formatting on save and not waste

time manually configuring cleanup actions on save too.

21

Chapter 5

Templates and Utilities

This chapter describes how to set up templates, utilities and any other productivity aids. Follow the steps

in this chapter if you intend to contribute back to the sister projects. There's no need to perform these

steps if you are just building the sister projects from source.

All of the template files described here are checked into Subversion, (at main/standards/src/main/

resources). To ease distribution they are uploaded to the Star Objects sourceforge website. The templates

are not versioned (other than by Subversion itself).

5.1. Eclipse Java Editor Templates

Like most IDEs, Eclipse allows templates to be defined for common code snippets. Star Objects provides

a number of templates to assist with testing.

To import templates, go to Windows > Preferences > Java > Editor > Templates:

https://starobjects.svn.sourceforge.net/svnroot/starobjects/trunk/main/standards/src/main/resources
https://starobjects.svn.sourceforge.net/svnroot/starobjects/trunk/main/standards/src/main/resources
http://starobjects.sourceforge.net

Templates and Utilities JUnit 4 Templates

22

JUnit 4 Templates

The JUnit4 templates provide a selection of templates to ease the writing of JUnit4-based unit tests.

The definition file is available at http://starobjects.sourceforge.net/m2-site/main/standards/resources/

eclipse-junit4-templates.xml.

The templates provided are:

• jubefore - creates setUp method annotated with @Before

• juafter - create tearDown method annotated with @After

• jutest - create method annotated with @Test

• juassert - create assertThat assertion

JMock 2 Templates

The JMock 2 templates provide a selection of templates to ease the writing of unit test that perform

mocking using JMock 2.

The definition file is available http://starobjects.sourceforge.net/m2-site/main/standards/resources/

eclipse-jmock2-templates.xml.

The templates provided are:

• jmrunwith - @RunWith(JMock.class)

• jmcontext - initialize Mockery context object

• jmmock - create a mock using context.mock(Foor.class)

• jmexpectations - create a set of expectations using context.checking(...)

http://starobjects.sourceforge.net/m2-site/main/standards/resources/eclipse-junit4-templates.xml
http://starobjects.sourceforge.net/m2-site/main/standards/resources/eclipse-junit4-templates.xml
http://starobjects.sourceforge.net/m2-site/main/standards/resources/eclipse-jmock2-templates.xml
http://starobjects.sourceforge.net/m2-site/main/standards/resources/eclipse-jmock2-templates.xml

23

Chapter 6

Using the Corporate POM

This chapter describes how the code should use the corporate POM as a parent. It is applicable for

contributors to any of the sister projects. Contributors to Star Objects who want to build and deploy the

corporate POM itself should refer to Chapter 12, The Corporate POM.

It's common practice to use a "corporate" POM (sometimes also inaccurately known as a super POM) to

act as a common parent for a group of related projects. As such, the Star Objects provides a corporate

POM - org.starobjects.star:corporate - for the sister projects that defines common dependency

versions and configuration for build plugins and reporting plugins. This corporate POM also inherits from

org.nakedobjects:release:4.0.x so implicitly defines the dependencies for Naked Objects itself.

Because the corporate POM is only a single pom artifact and is independent of any given project, it is

numbered 1, 2, 3,... There is also no use of the snapshot mechanism. This is consistent with the approach

taken by Apache themselves (at the time of writing Apache's own corporate POM was ~14).

This chapter assumes that the corporate POM has been released (as described in Chapter 12, The Corporate

POM).

6.1. Defining the Corporate POM

The corporate POM is org.starobjects.star:corporate. The pom.xml in the main module (see

the section called “The 'main' module”) should define it as a parent:

<parent>

 <groupId>org.starobjects.star</groupId>

 <artifactId>corporate</artifactId>

 <version>1</version>

</parent>

Typically the version should be the highest available. You can browse the Star Objects repository (see

Section 6.2, “Defining the Corporate Repository” below) to see which is the highest.

Using the Corporate POM Defining the Corporate Repository

24

6.2. Defining the Corporate Repository

The corporate POM is always available from Star Objects' own Maven repository, hosted at http://

starobjects.sourceforge.net/m2-repo. In order to access the corporate POM, a bootstrap reference to this

repository is required:

<repositories>

 <!-- bootstrap parent corporate POM -->

 <repository>

 <id>starobjects-release</id>

 <url>http://starobjects.sourceforge.net/m2-repo/release/</url>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 <releases>

 <enabled>true</enabled>

 </releases>

 </repository>

</repositories>

Note, the corporate POM should also be available from the Maven central repo.

http://starobjects.sourceforge.net/m2-repo
http://starobjects.sourceforge.net/m2-repo

25

Chapter 7

Writing DocBook Documentation

This chapter describes how to write and then build DocBook documentation. It is applicable for

contributors who wish to update the documentation and check the result of their changes.

All of the sister projects provide supporting documentation, typically a developers' guide (developers-

guide.xml) and a users' guide (users-guide.xml). Star Objects itself has only a developers guide,

namely this document.

All of these documents are written in DocBook, and are built using Maven, using build plugins defined

by the corporate POM (see Part IV, “Building and Deploying the Corporate Artifacts”).

This chapter explains how to write and built this documentation, using Star Objects' own documentation

as a guide.

7.1. Source Code Repository

Generally speaking the documentation for all sister projects lives in that project's sourceforge repository

under trunk/main/documentation. For example, the documentation for the Star Objects project

resides in the Star Objects repository under trunk/main/documentation.

As always, use Subversion to check out. For example:

svn co https://starobjects.svn.sourceforge.net/svnroot/starobjects/trunk/main/documentation ~/

starobjects/trunk/main/documentation

https://starobjects.svn.sourceforge.net/svnroot/starobjects/trunk/main/documentation

Writing DocBook Documentation Editing the Documentation (using XMLMind)

26

7.2. Editing the Documentation (using XMLMind)

XMLMind XML Editor

The documentation are written in XML using the DocBook dialect. As such you can edit the text with

any text editor. However, you may find it easier to use an editor; the one I use is from XMLMind. The

personal edition is free for use on open source projects.

Images

Images should be saved as .png files, under the images subdirectory (relative the directory holding xxx-

guide.xml).

Images should be embedded into the documentation using a screenshot/mediaobject/

imageobject/imagedata tag. In XMLMind, use Edit>Insert and select screenshot:

The outer imagedata tag should have an appropriate scale attribute; a value of 50 (note: not 50%)

works reasonably well:

http://www.xmlmind.com/xmleditor

Writing DocBook Documentation Tables

Naked Objects' Sister Projects 1.0:
Developers Guide (0.1) 27

Tables

In XMLMind, use Edit > Insert, then select one of table, table(head_column), table(head_row),

table(head_row_column):

This will create a 2x2 table body with a header row and/or column if requested. Then use DocBook >

Column > Insert or DocBook > Row > Insert to adjust the number of columns and rows as required.

Writing DocBook Documentation Build the Documentation

28

7.3. Build the Documentation

The documentation for all sister projects can be built with Maven in the usual way. For example, to build

Star Objects' own documentation, use:

cd ~/starobjects/trunk/main/documentation

mvn clean install

This does build an pom artifact, with an artifact Id of documentation in the local repository (for example,

the Star Objects project's own documentation artifact is org.starobjects.star:documentation).

However, this isn't what we're interested in. Instead, what we care about is the generated HTML website

and PDF documents in target/docbkx:

Writing DocBook Documentation Deploying the Documentation

Naked Objects' Sister Projects 1.0:
Developers Guide (0.1) 29

7.4. Deploying the Documentation

The generated documentation is deployed as part of the site, basically by copying the generated artifacts

from the target/docbkx directory into target/site/docbkx directory. See the section called “Menu

items linking to Documentation (parent modules only)” for more details.

31

Chapter 8

Writing Site Documentation

This chapter describes how to write and to check site documentation for any of the sister projects. Follow

the steps in this chapter if you intend to contribute back to the sister projects and will be writing such

documentation. There's no need to perform these steps if you are just building the sister projects from

source.

Maven provides the ability to automatically create a website holding various reports, such as Checkstyle,

PMD, test results and code coverage.

The reporting plugins in the corporate POM (see Chapter 6, Using the Corporate POM) go a long way

to defining the contents of these sites; since every sister project uses the corporate POM that also means

that the sites will have the same general contents.

Maven sites can also be customized and supplemented with additional details. This chapter describes how

to perform this customization and where to place this documentation. It also describes how the sister

project site should be skinned using a standard Maven skin, common for all sister projects. This chapter

assumes that the Maven skin has been released (as described in Chapter 13, The Maven Skin).

8.1. Overview

Customization for Maven sites is accomplished by:

• customizing the menu bar and general look-n-feel (see Section 8.3, “Customizing the Site Descriptor

(site.xml)”)

This is done by editing the site descriptor for each module, namely, src/site/site.xml. The exact

content of the site descriptor varies, generally parent modules (and standalone modules) will have more

content than child modules. This is in part because child modules inherit certain information from the

parent.

• writing additional site content (see Section 8.4, “Writing Additional Site Content”)

Writing Site Documentation Source Code Repository

32

The additional content lives under src/site/xxx, where xxx represents the file format. These files

can be linked to from the menu bar using site.xml. Any document that corresponds to index.html

(for example src/site/apt/index.apt) need not be explicitly linked to because it will be the

default for the site.

• specifying the list of reports to produce (see Section 8.5, “Generated Reports”)

This is done in the pom.xml. For sister projects the configuration is inherited from the corporate POM.

The following sections provide further detail on these steps.

For details on actually building, checking and deploying the site, see Chapter 11, Deploying the Site.

8.2. Source Code Repository

Generally speaking the documentation for all sister projects lives in that project's sourceforge repository

under trunk/main/documentation. For example, the documentation for the Star Objects project

resides in the Star Objects repository under trunk/documentation.

As always, use Subversion to check out. For example:

svn co https://starobjects.svn.sourceforge.net/svnroot/starobjects/trunk/main/documentation ~/

starobjects/trunk/main/documentation

8.3. Customizing the Site Descriptor (site.xml)

Generally speaking sister projects should have site documentation alongside the code artifacts for each

Maven module (so that there is a src/site directory alongside src/main/java and src/test/java).

The parent module is the top-level module that contains the main index.html entry page along with a

hierarchy of subsites corresponding to the submodules defined in the <modules> element of the POM,

for example:

<modules>

 <module>fixtures</module>

 <module>documentation</module>

</modules>

The child modules are then the modules referenced by the parent module.

Some sister projects may have separate standalone modules that just contain site content (typically with

no code artifacts of their own). These can be thought of as parent modules with no children modules.

The customization required depends on whether the site is a parent/standalone module or a child module.

Parent Module and Standalone Modules

Project Name

The project name should use ${project.name}, being taken from the pom.xml.

<project name="${project.name}">

https://starobjects.svn.sourceforge.net/svnroot/starobjects/trunk/main/documentation

Writing Site Documentation Parent Module and Standalone Modules

Naked Objects' Sister Projects 1.0:
Developers Guide (0.1) 33

 ...

</project>

The name will appear in any child modules sites linking back to the parent module (see the section called

“Body and Menu Items”). It must be short enough to fit in the space provided.

Version Position and Banner

The version should be positioned to the right, and the logo should use a version of hal-logo-for-

maven-site.jpg customised for the sister project (there is a hal-logo-for-maven-site.pdn

Paint.NET master available in the Star Objects umbrella project):

<project name="${project.name}">

 <version position="right"/>

 <bannerLeft>

 <name>HAL</name>

 <src>images/hal-logo-for-maven-site.jpg</src>

 <href>.</href>

 </bannerLeft>

 ...

</project>

Powered By Logo

The <poweredBy> element (which adds a logo at the bottom of the menu bar) should be specified to use

the NO-powered-by-logo.png:

<project name="${project.name}">

 ...

 <poweredBy>

 <logo name="Naked Objects" href="http://nakedobjects.org"

 img="images/NO-powered-by-logo.png"/>

 </poweredBy>

 ...

</project>

Note that the theme expects that the .png image should be scalable to 100 x 62 (see maven-theme.css

in Star Objects' trunk/skin/src/main/resources/css).

Skin

The skin should be specified as the corporate Maven skin:

<project name="${project.name}">

 ...

 <skin>

 <groupId>org.starobjects.star</groupId>

 <artifactId>skin</artifactId>

 <version>1</version>

 </skin>

 ...

</project>

Note that section Chapter 13, The Maven Skin of this document describes how this skin is deployed. Sister

projects should be able to take it for granted that this skin is available.

Body and Menu Items

The <body> element defines menu items (and optionally links)

http://getpaint.net

Writing Site Documentation Parent Module and Standalone Modules

34

<project name="${project.name}">

 ...

 <body>

 ...

 </body>

</project>

Link items (parent modules only)

(For parent modules), link item (appearing in the top border) should reference Naked Objects and other

sister projects:

 <body>

 <links>

 <item name="Naked Objects" href="http://www.nakedobjects.org/"/>

 <item name="Sister Projects" href="http://starobjects.sourceforge.net"/>

 </links>

 ...

 </body>

Menu item linking to Child Modules (parent modules only)

(For parent modules), a menu item should reference child modules, providing navigability to the subsites

of these modules:

 <body>

 ...

 <menu ref="modules" inherit="top"/>

 ...

 </body>

Menu item linking to Module-specific Content

If there is any specific content (such as overview pages, screencasts, FAQ pages and so on) then they

should be referenced here. At the time of writing none of the sister projects had this requirement, but the

Naked Objects site, also built with Maven, does show how:

 <body>

 ...

 <menu name="Developing with Naked Objects">

 <item name="Forums" href="http://sourceforge.net/projects/nakedobjects/forums/" />

 <item name="Blog/News" href="http://blog.nakedobjects.org/" />

 <item name="Manual" href="manual.html" collapse="true">

 <item name="Tutorial" href="tutorial.html" />

 <item name="Application manual" href="application.html" />

 <item name="Filename conventions" href="file-nameconvention.html" />

 <item name="Installing NOF" href="installing-nof.html" />

 </item>

 </menu>

 ...

 </body>

Menu item linking to Reports (if source code)

Neither parent sites nor standalone sites are expected to include source code. If they do, though, then a

menu item to reference generated reports should be added:

 <body>

 ...

 <menu ref="reports"/>

 ...

 </body>

Writing Site Documentation Parent Module and Standalone Modules

Naked Objects' Sister Projects 1.0:
Developers Guide (0.1) 35

Menu items linking to Documentation (parent modules only)

Many parent modules will have a documentation (sub)module which is used to create DocBook

documentation (as discussed in Chapter 7, Writing DocBook Documentation). The following links allow

the generated documentation to be referenced directly from the parent site:

 <body>

 ...

 <menu name="Documentation">

 <item name="User Guide (PDF)"

 href="documentation/docbkx/pdf/user-guide.pdf"/>

 <item name="User Guide (HTML)"

 href="documentation/docbkx/html/user-guide/user-guide.html"/>

 <item name="Developers Guide (PDF)"

 href="documentation/docbkx/pdf/developers-guide.pdf"/>

 <item name="Developers Guide (HTML)"

 href="documentation/docbkx/html/developers-guide/developers-guide.html"/>

 </menu>

 ...

 </body>

These links pick up generated documentation that is copied from each the documentation project's

target/docbkx directory into its target/site/docbkx directory. The copying itself is defined in the

corporate POM, as part of the <postProcess> configuration of the docbkx-maven-plugin plugin:

<plugin>

 <groupId>com.agilejava.docbkx</groupId>

 <artifactId>docbkx-maven-plugin</artifactId>

 <version>2.0.8</version>

 ...

 <executions>

 <execution>

 <id>html-docs</id>

 ...

 <configuration>

 ...

 <postProcess>

 <copy todir="target/site/docbkx/html" failonerror="false">

 <fileset dir="target/docbkx/html">

 <include name="**/*"/>

 </fileset>

 </copy>

 </postProcess>

 </configuration>

 </execution>

 ...

 </executions>

</plugin>

There's a similar <postProcess> element for PDF documents too.

Note that some sister projects may only have user guide and/or documentation guide. For example, Star

Objects umbrella project only provides a developers guide (this guide!). In such cases, only add the links

required.

Menu items linking to Project Resources

Project resources provide pointers to resources hosted elsewhere (typically SourceForge). For example,

Tested Objects has:

 <body>

Writing Site Documentation Child Modules

36

 ...

 <menu name="Project Resources">

 <item name="SF Trac Wiki" href="http://sourceforge.net/apps/trac/testedobjects"/>

 <item name="SF Project Page" href="http://sourceforge.net/projects/testedobjects"/>

 </menu>

 ...

 </body>

The "Maven Repo" link perhaps needs a little more explanation. Each of the sister projects has its own

staging Maven repository on SourceForge. The "Maven Repo" link allows this repository to be browsed.

Menu items linking to Sister Projects

All sister projects should have a set of menu items pointing to other sister projects (home page, and the

Maven repo):

 <body>

 ...

 <menu name="Sister Projects">

 <item name="Home" href="http://starobjects.sourceforge.net"/>

 <item name="Maven Repo" href="http://sourceforge.net/projects/starobjects/m2-repo"/>

 </menu>

 ...

 </body>

Menu items linking to any other resources

Other resources provide pointers to related projects, blogs and so forth, also hosted elsewhere. The

standard set for all sister projects are:

 <body>

 ...

 <menu name="Other Resources">

 <item name="Dan Haywood's blog" href="http://danhaywood.com"/>

 <item name="Naked Objects" href="http://www.nakedobjects.org/"/>

 <item name="Naked Objects for .NET" href="http://www.nakedobjects.net/"/>

 <item name="Naked Objects blog" href="http://blog.nakedobjects.org/"/>

 <item name="Scimpi" href="http://www.scimpi.org/" />

 </menu>

 </body>

Child Modules

Child modules inherit site definitions from the parent, but override the <body> element to customize

the contents of the menu items. Pretty much everything else (such as the logo and skin definition) is

unchanged.

Project Name

The project name should use ${project.name}, being taken from the pom.xml.

<project name="${project.name}">

 ...

</project>

The name will appear in any child sites linking back to the parent module (see the section called “Parent

Module and Standalone Modules”), so it must be short enough to fit in the space provided.

Body and Menu Items

The <body> element defines menu items (and optionally links)

Writing Site Documentation Child Modules

Naked Objects' Sister Projects 1.0:
Developers Guide (0.1) 37

<project name="${project.name}">

 ...

 <body>

 ...

 </body>

</project>

Menu link referencing the Parent Module

The child modules should reference the parent module, providing navigability back from the child's subsite

to the parent's site:

 <body>

 <menu ref="parent"/>

 ...

 </body>

Menu item linking to Module-specific Content

If there is any specific content for the child module then they should be referenced here. At the time of

writing none of the sister projects had this requirement, but the Naked Objects site, also built with Maven,

does show how:

 <body>

 ...

 <menu name="Developing with Naked Objects">

 <item name="Forums" href="http://sourceforge.net/projects/nakedobjects/forums/" />

 <item name="Blog/News" href="http://blog.nakedobjects.org/" />

 <item name="Manual" href="manual.html" collapse="true">

 <item name="Tutorial" href="tutorial.html" />

 <item name="Application manual" href="application.html" />

 <item name="Filename conventions" href="file-nameconvention.html" />

 <item name="Installing NOF" href="installing-nof.html" />

 </item>

 </menu>

 ...

 </body>

Links to Generated Reports

All child modules are expected to contain source code. They should therefore include a reference to

generated reports from that source code:

 <body>

 ...

 <menu ref="reports"/>

 </body>

Documentation Links (documentation child module only)

Since all sister projects should have a documentation module, this module should also link to the

documentation. The text for this is similar to that on the parent module, but one level deeper in the directory

(ie remove the "documentation/" from the path):

 <body>

 ...

 <menu name="Documentation">

 <item name="User Guide (PDF)"

 href="docbkx/pdf/user-guide.pdf"/>

 <item name="User Guide (HTML)"

 href="docbkx/html/user-guide/user-guide.html"/>

 <item name="Developers Guide (PDF)"

Writing Site Documentation Writing Additional Site Content

38

 href="docbkx/pdf/developers-guide.pdf"/>

 <item name="Developers Guide (HTML)"

 href="docbkx/html/developers-guide/developers-guide.html"/>

 </menu>

 ...

 </body>

8.4. Writing Additional Site Content

Additional site content

• documents go in src/site/xxx, where xxx is the file format.

For example APT documents live under src/site/apt.

• images and other resources go in src/site/resources and are referenced relative to this directory.

For example images typically live under src/site/resources/images.

As mentioned above, any document that corresponds to index.html (for example src/site/apt/

index.apt) need not be explicitly linked to because it will be the default for the site.

File Formats

Maven sites can include documentation in any of a number of file formats:

Table 8.1. File formats supported by Maven site

Format Type Location Reference

APT Wiki-like format src/site/apt/xxx.apt Maven Doxia site

(APT reference)

DocBook Full power of DocBook src/site/docbook/

xxx.xml

DocBook site (quick

ref)

FML FAQ Markup

Language

src/site/fml/xxx.xml Maven Doxia site

(FML reference)

XDoc Simplified DocBook,

used in Maven 1.

src/site/xdoc/xxx.xml Maven Doxia site

(XDoc reference)

Of these, APT is the lowest entry, and is the generally recommended format; see the section called “APT

Quick Start”.

APT Quick Start

APT reference is available online at http://maven.apache.org/doxia/references/apt-format.html, but the

following are some of the main formatting tips.

Sections and Sub-sections

Sections are not indented, paragraphs are.

My section title (not indented).

http://maven.apache.org/doxia/references/apt-format.html
http://maven.apache.org/doxia/references/apt-format.html
http://docbook.org/tdg/en/html/quickref.html
http://docbook.org/tdg/en/html/quickref.html
http://maven.apache.org/doxia/references/fml-format.html
http://maven.apache.org/doxia/references/fml-format.html
http://maven.apache.org/doxia/references/xdoc-format.html
http://maven.apache.org/doxia/references/xdoc-format.html
http://maven.apache.org/doxia/references/apt-format.html

Writing Site Documentation APT Quick Start

Naked Objects' Sister Projects 1.0:
Developers Guide (0.1) 39

 My paragraph first line (indented by 2 spaces). There is no need for remaining

sentences in the paragraph to be indented. A blank line terminates the paragraph.

Subsections can be defined using leading asterisks (*) to indicate the subsection level indents:

Section title

* Sub-section title

** Sub-sub-section title

*** Sub-sub-sub-section title

Fonts

In addition to regular font, we can specify italics, bold or monospaced:

 <italicised text>

 <<bold text>>

 <<<monospaced text>>>

Lists

List items are indented, and begin with an asterisk (*)

 * List item 1.

 * List item 2.

 Paragraph contained in list item 2.

 * Sub-list item 1.

 * Sub-list item 2.

 * List item 3.

To force the end of a list, use the [] pseudo-element:

 * List item 3.

 []

 This text is not in the list

Links and Figures

To create a hyperlink, use:

 Link to {{http://www.pixware.fr}}.

 or

 Link to {{{http://www.pixware.fr}Pixware home page}}.

To create an anchor, use:

 {Anchor}. This text is anchored.

 and then

 Link to {{anchor}}.

 or

 Link to {{{anchor}showing alternate text}}

Figures are specified by

Writing Site Documentation Generated Reports

40

 [images/foo/bar.png] Figure caption

Code Blocks (verbatim text)

To quote a code block, use 3 dashes (---) before and after:

--

public class FooBar {

 ...

}

--

To put into a box, use a plus symbol (+--)

Other Code Elements

In addition to the above, APT supports tables, horizontal rules (===), page breaks, comments and special

characters. See the Maven Doxia site for further details.

8.5. Generated Reports

The reports are defined by the <reporting> section of the corporate POM. These only appear in a

module's site if there is a <menu ref="reports"/> link; generally this is the case for child modules

and is not the case for parent modules.

At the time of writing, the reports defined were:

<reporting>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-project-info-reports-plugin</artifactId>

 ...

 </plugin>

 <plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>cobertura-maven-plugin</artifactId>

 </plugin>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-surefire-report-plugin</artifactId>

 </plugin>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-checkstyle-plugin</artifactId>

 ...

 </plugin>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-pmd-plugin</artifactId>

 ...

 </plugin>

 <plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>taglist-maven-plugin</artifactId>

 </plugin>

http://maven.apache.org/doxia/references/apt-format.html

Writing Site Documentation Checking the Site by Deploying it Locally

Naked Objects' Sister Projects 1.0:
Developers Guide (0.1) 41

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-jxr-plugin</artifactId>

 ...

 </plugin>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-javadoc-plugin</artifactId>

 ...

 </plugin>

 </plugins>

</reporting>

The maven-project-info-reports-plugin plugin generates the submenu under the "Project Information"

menu item:

The remaining plugins each generate a submenu item under the "Project Reports" menu item:

8.6. Checking the Site by Deploying it Locally

To check any changes to the site it is necessary to build and deploy it locally.

Writing Site Documentation Prerequisites

42

Prerequisites

See Appendix A, Deployment Prerequisites, which describes prerequisite configuration needed prior to

performing any deployment.

Performing the Local Deploy

To build a site and deploy it locally, use:

mvn site-deploy -D dist=local

The generated site can be browsed by navigating to the location specified in the corporate POM, namely /

tmp/m2-sites/${distMgmtArtifactId}. For example, Star Objects' own site is deployed to /tmp/

m2-sites/starobjects.

The screenshot below shows what a typical generated site looks like:

43

Part III

Release Process

This part of the guide how to release the code or site. It will only be of interest to those with admin

privileges.

45

Chapter 9

Deploying a Code Snapshot

This chapter describes how to release the main module into the snapshot repository. It will only be of

interest to contributors with admin privileges to release code.

A snapshot of the code artifacts can be deployed at any time. This chapter describes the steps involved,

which are quite straightforward. For details on deploying a code release proper, see Chapter 10, Deploying

a Code Release.

9.1. Prerequisites

If deploying remotely, check the server settings are defined (see Appendix A, Deployment Prerequisites).

9.2. Deploying a Snapshot Manually

Deploying a snapshot means first deploying the main module, and then deploying the support module.

Check with the sister projects if there are other modules to deploy.

For local deploys, the pom.xml module files deploy to subdirectories under /tmp. See Section A.1, “How

profile-based distribution management has been designed” for further details.

Deploying the main module

First, build the module:

cd ~/xxxobjects/trunk/main

mvn clean install

Then, ensure it can be deployed locally:

mvn deploy -D dist=local

Deploying a Code Snapshot Deploying the support module

46

Then, deploy it remotely:

mvn deploy -D dist=remote

Deploying the support module

The steps for deploying the support module are essentially identical to deploying the main module; just

replace 'main' with 'support'.

47

Chapter 10

Deploying a Code Release

This chapter describes how to perform a release, and to deploy that release remotely. It will only be of

interest to contributors with admin privileges to release and deploy code.

The release process tags the codebase under trunk into tags, updating the versions in all POMs in the

process removing the "-SNAPSHOT" suffix. After the release is finished, it may then be deployed . Note

that snapshots do not go through this process and can be deployed at any time (see Chapter 9, Deploying

a Code Snapshot).

The release is performed in two parts: first the main artifacts, then the support artifacts.

10.1. Pre-release Check List

First, ensure there are no oustanding code changes.

Then, perform a smoke test:

• As per Chapter 3, Building Projects from Source, build the parent, the main artifacts and the support

artifacts from source

• make sure that the archetype runs correctly

• make sure that the documentation is built correctly

• make sure that the site builds correctly

To check the site builds it is actually necessary to perform a local deploy. See Section 8.6, “Checking

the Site by Deploying it Locally” for details.d

Finally, if the release is to be deployed remotely (as is typically the case), check the server settings are

defined (see Appendix A, Deployment Prerequisites).

Deploying a Code Release Releasing the Main Module

48

10.2. Releasing the Main Module

First we release the main module with submodules.

Release Prepare (Dry Run)

First perform a dry run:

cd ~/xxxobjects/trunk/main

mvn release:prepare -D dryRun=true

This will walk you through a dry run and you can view the temporary POMs it creates to verify you did

everything correctly.

For example, when on 1.0-beta-3-SNAPSHOT the release plugin correctly guesses the release as 1.0-

beta-3 and the next snapshot to be 1.0-beta-4-SNAPSHOT. You may need to override the release tag

guess, specifically from "main-1.0-beta-3" to just "1.0-beta-3". There's no need for that "main" prefix; it

is already specified in the path (and in mvn-release-plugin's tagBase configuration).

As a result of this dry run you'll see the following files:

• release.properties - copy of the properties to be used

• pom.xml.releaseBackup - the pom.xml prior to any changes; identical to pom.xml since only done

a dryRun

• pom.xml.tag - the pom.xml as it will look when tagged.

• pom.xml.next - the pom.xml as it will look for the next iteration.

Release Prepare

When ready, perform the prepare for real:

cd ~/xxxobjects/trunk/main

mvn release:clean release:prepare

This will again ask for the values release values, defaulting from release.properties file:

This will:

• remotely tag the project

• increment the trunk's version, and commit

Deploying the Release

There are two different ways to deploy a release, either using the mvn-release-plugin or manually.

• The mvn-release-plugin's perform goal reads the information in release.properties, then checks

out the newly created tag, does a mvn deploy, and does a mvn site:deploy.

• Alternatively the above steps can be performed manually

In this section we concentrate only on the manual approach; it provides full with visibility of the tagged

release before finally deploying it.

Deploying a Code Release Support Module

Naked Objects' Sister Projects 1.0:
Developers Guide (0.1) 49

Pull Down Tag & Build

First, pull down the new tag:

cd ~/xxxobjects/tags/main

svn update 1.0-beta-3

or whatever the release was just tagged.

Then, make sure that the code builds:

mvn clean install

Perform any last-minute verification.

Deploy Module

The steps for deploying the release are essentially the same as deploying a snapshot. Essentially the steps

are:

• check deployment prerequisites (see Appendix A, Deployment Prerequisites)

• switch to the documentation submodule:

cd documentation

• rehearse the deployment by deploying locally, use:

mvn deploy -D dist=local

• when happy, deploy the release remotely:

mvn deploy -D dist=remote

See Chapter 9, Deploying a Code Snapshot for more details if required

10.3. Support Module

The steps for deploying the support module are essentially identical to deploying the main module; just

replace 'main' with 'support'.

10.4. Deploy Site

You will probably want to deploy the site remotely. See Chapter 11, Deploying the Site for details.

51

Chapter 11

Deploying the Site

This chapter describes how to deploy the site, as well as documentation. It is applicable to those

administrators with permissions to upload changes to the new site, and will generally be part of a core

release (see Chapter 10, Deploying a Code Release). For contributors who may have made changes and

just want to check them, see Section 8.6, “Checking the Site by Deploying it Locally”.

Deploying the site also deploys the documentation; as described in Section 8.3, “Customizing the Site

Descriptor (site.xml)”, the docbkx-maven-plugin also copies the PDF and HTML it generates into the

site's target directory.

11.1. Prerequisites

First, check that the locally deployed site is good; see Section 8.6, “Checking the Site by Deploying it

Locally”for details.

Second, ensure that any deployment prerequisites have been met, as per Appendix A, Deployment

Prerequisites. (Basically, you may need to add an entry into ~/.m2/settings.xml for the server hosting

the site).

11.2. Deploying Remotely to Sourceforge

Since we are deploying to sourceforge, we must first create an SSH shell using ssh or putty (if on

Windows). Full details are described in http://maven.apache.org/plugins/maven-site-plugin/examples/

site-deploy-to-sourceforge.net.html, but what it amounts to is:

• ensure you are in the main submodule:

cd ~/xxxobjects/trunk/main

• if on *NIX, start a local shell and in it run:

http://maven.apache.org/plugins/maven-site-plugin/examples/site-deploy-to-sourceforge.net.html
http://maven.apache.org/plugins/maven-site-plugin/examples/site-deploy-to-sourceforge.net.html

Deploying the Site Deploying Remotely to Sourceforge

52

ssh -t USER,PROJECT@shell.sourceforge.net create

• if on Windows, open up Putty and set the following settings:

• Session > Host Name : shell.sourceforge.net

• Session > Connection Type: SSH

• Connection > SSH > TTY: ensure that "Don't allocate a pseudo-terminal" is NOT checked

• Connection > SSH: Remote command: create

• Connection > Data: Auto-login username: USER,PROJECT

Once this has been done, then you should be able to deploy the site remotely:

mvn site-deploy -D dist=remote

53

Part IV

Building and Deploying the Corporate
Artifacts

The Star Objects project holds a number of artifacts which are referenced by other sister projects.

Specfically, these are:

• the corporate POM, which defines common dependency versions and configuration for build plugins

and reporting plugins, and

• a maven site skin which provides a standard look-n-feel for Maven sites generated by sister projects

• the 'main' project, which in turn defines:

• standards - as referenced in Part II, “Contributing Changes”

• this documentation

• a Maven website aggregating the above (as well as deploying them for easy access via the web)

These part of the document describes how to build and deploy these "corporate" artifacts. It is only

applicable to those with admin permission to release code for the Star Objects project itself. Users and

contributors of sister projects should look to Chapter 6, Using the Corporate POM and Chapter 8, Writing

Site Documentation.

55

Chapter 12

The Corporate POM

This chapter describes how to release the corporate POM. It is only applicable if you have been given

admin permissions to release code for the Star Objects project. If you are contributing to other sister

projects then you probably want to look at Chapter 6, Using the Corporate POM.

This chapter describes how to build and deploy the corporate POM.

12.1. Source Code Repository

The corporate POM resides in the Star Objects sourceforge repository under trunk/corporate. Use

Subversion to check out:

svn co https://starobjects.svn.sourceforge.net/svnroot/starobjects/trunk/corporate ~/

starobjects/trunk/corporate

12.2. Build the Corporate POM

Build the corporate POM using:

cd ~/starobjects/trunk/corporate

mvn clean install

https://starobjects.svn.sourceforge.net/svnroot/starobjects/trunk/corporate

The Corporate POM Deploy the Corporate POM

56

This builds org.starobjects.star:corporate.

12.3. Deploy the Corporate POM

Prerequisites

See Section A.2, “Prerequisites for Deploying Corporate Artifacts (from the umbrella project)”.

Deploy

To rehearse the deployment locally, use:

cd ~/starobjects/trunk/corporate

mvn deploy -D dist=local

This will deploy the corporate POM to /tmp/m2-repo/starobjects-release. See Section A.1,

“How profile-based distribution management has been designed” for further details.

To deploy remotely, use:

cd ~/starobjects/trunk/corporate

mvn deploy -D dist=remote

The Corporate POM Using the Corporate POM

Naked Objects' Sister Projects 1.0:
Developers Guide (0.1) 57

This deploys the corporate POM to the server referenced in <distributionManagement> and specified

in your local settings.xml.

12.4. Using the Corporate POM

See Chapter 6, Using the Corporate POM for details of how the sister projects should actually use

(reference) the corporate POM.

59

Chapter 13

The Maven Skin

This chapter describes how to release the Maven skin. It is only applicable if you have been given admin

permissions to release code for the Star Objects project. If you are contributing site documentation to

other sister projects then you probably want to look at Chapter 8, Writing Site Documentation (which

will reference this site skin from its released location).

Maven provides the ability to automatically create a website holding various reports, such as Checkstyle,

PMD, test results and code coverage. Furthermore this site can be skinned using an artifact which provides

a set of CSS styles and supporting icons.

So that there is a common look-n-feel for sister projects, we use a single Maven skin. Like the corporate

POM, this is managed under the Star Objects project, and is released to the Star Objects Maven repository

on the web. Generally then the sister projects simply pick up the skin from this repository.

This part of the document describes how to build this skin. It is applicable only for those (such as

administrators) who will be modifying and re-releasing the skin itself.

13.1. Source Code Repository

The Maven skin resides in the Star Objects sourceforge repository under trunk/skin. Use Subversion to

check out:

svn co https://starobjects.svn.sourceforge.net/svnroot/starobjects/trunk/skin ~/starobjects/

trunk/skin

13.2. Build the Skin

Build the skin using:

cd ~/starobjects/trunk/skin

https://starobjects.svn.sourceforge.net/svnroot/starobjects/trunk/skin

The Maven Skin Deploying the Skin

60

mvn clean install

This builds org.starobjects.star:skin.

13.3. Deploying the Skin

Prerequisites

See Section A.2, “Prerequisites for Deploying Corporate Artifacts (from the umbrella project)”.

Deploy

To rehearse the deployment locally, use:

cd ~/starobjects/trunk/skin

mvn deploy -D dist=local

This will deploy the Maven skin to /tmp/m2-repo; see Section A.1, “How profile-based distribution

management has been designed” for further details.

To deploy remotely, use:

cd ~/starobjects/trunk/skin

mvn deploy -D dist=remote

The Maven Skin Using the Skin

Naked Objects' Sister Projects 1.0:
Developers Guide (0.1) 61

This deploys the Maven skin to the server referenced in <distributionManagement> and specified

in settings.xml.

13.4. Using the Skin

See Chapter 8, Writing Site Documentation for details of how the site documentation actually uses

(references) the skin.

63

Chapter 14

The 'Main' Module (Docs & Site)

The overall Maven site, along with documentation and the standards resources (for checkstyle, pmd etc)

are built from the 'main' parent module. This module depends on both the corporate POM and the Maven

skin, so they must have been deployed first.

There is no code in this main module, so building it and deploying it are straightforward. The POMs for

the documentation and standards copy over their generated artifacts so that they are uploaded to the site

automatically. The documentation is copied using the described earlier (see the section called “Menu items

linking to Documentation (parent modules only)”), the standards resource files rely on some bespoke

POM copying.

14.1. Source Code Repository

The 'main' module resides in the Star Objects sourceforge repository under trunk/main. Use Subversion

to check out:

svn co https://starobjects.svn.sourceforge.net/svnroot/starobjects/trunk/main ~/starobjects/

trunk/main

14.2. Building the Documentation & Site

Build the documentation using:

mvn clean install

The site will be deployed to /tmp/m2-sites/starobjects.

You may want to combine this with deploying locally (see below) using:

mvn clean install site-deploy -D dist=local

https://starobjects.svn.sourceforge.net/svnroot/starobjects/trunk/main
sec.deploying-starobjects-site

The 'Main' Module (Docs & Site) Deploying the Site

64

14.3. Deploying the Site

The steps for deploying the site are the same as for any other sister project. Basically, it boils down to

checking the site is okay locally, the deploying using -D dist=remote, with a separate ssh session created

to sourceforge. Full details are given in Chapter 11, Deploying the Site.

65

Part V

Appendices

This part of the developers guide contain reference appendices.

67

Appendix A. Deployment Prerequisites

This appendix describes prerequisites for deploying artifacts from both this, the corporate "umbrella"

project, and also from other sister projects. It is only applicable if you have been given admin permissions

to release code for the Star Objects project.

A.1. How profile-based distribution management has been designed

The corporate POM defines two <profile>s that allow deployments to be rehearsed by deploying

locally, and then when ready deployed remotely. These contain <distributionManagement> tags

activated by a property key. This allows us to rehearse a deployment (by deploying locally) of the corporate

artifacts before actually doing the deployment proper (deploying remotely).

To deploy locally, we add:

-D dist=local

And to deploy remotely, we instead add:

-D dist=remote

All code artifacts, for all sister projects, are deployed to the repositories represented by the starobjects-

snapshot or starobjects-release server definitions. However, each sister project has its own site.

Every POM defining artifacts being site-deployed must specify (or inherit) a number of properties. For

example, starobjects' own settings are:

<properties>

 ...

 <distMgmtArtifactId>starobjects</distMgmtArtifactId>

 <distMgmtArtifactName>Star Objects</distMgmtArtifactName>

 <distMgmtArtifactSfDir>s/st/starobjects</distMgmtArtifactSfDir>

</properties>

Similarly, Tested Objects has:

<properties>

 ...

 <distMgmtArtifactId>testedobjects</distMgmtArtifactId>

 <distMgmtArtifactName>Tested Objects</distMgmtArtifactName>

 <distMgmtArtifactSfDir>t/te/testedobjects</distMgmtArtifactSfDir>

</properties>

Other sister projects similarly need to setup these properties.

These properties are then used in <distributionManagement>. For a local deploy, we use the

following profile:

<profile>

 <id>dist-local</id>

 <!-- USE -D dist=local TO SELECT -->

 <activation>

 <property>

 <name>dist</name>

Deployment Prerequisites How profile-based distribution management has been designed

68

 <value>local</value>

 </property>

 </activation>

 <distributionManagement>

 <snapshotRepository>

 <id>starobjects-snapshot</id>

 <name>Star Objects Local Snapshot Repository</name>

 <url>file:///tmp/m2-repo/snapshot</url>

 <uniqueVersion>false</uniqueVersion>

 </snapshotRepository>

 <repository>

 <id>starobjects-release</id>

 <name>Star Objects Local Release Repository</name>

 <url>file:///tmp/m2-repo/release</url>

 </repository>

 <site>

 <id>${distMgmtArtifactId}-site</id>

 <name>${distMgmtArtifactName} Site</name>

 <url>file:///tmp/m2-sites/${distMgmtArtifactId}</url>

 </site>

 </distributionManagement>

</profile>

Any deployment using this profile will put into /tmp.

Remote deployments on the other hand SFTP/SCP files up to sourceforge:

<profile>

 <id>dist-remote</id>

 <!-- USE -D dist=remote TO SELECT -->

 <activation>

 <property>

 <name>dist</name>

 <value>remote</value>

 </property>

 </activation>

 <distributionManagement>

 <snapshotRepository>

 <id>starobjects-snapshot</id>

 <name>Star Objects Snapshot Repository</name>

 <url>

 sftp://web.sourceforge.net/home/groups/s/st/starobjects/htdocs/m2-repo/snapshot

 </url>

 <uniqueVersion>false</uniqueVersion>

 </snapshotRepository>

 <repository>

 <id>snapshot-release</id>

 <name>Star Objects Release Repository</name>

 <url>

 sftp://web.sourceforge.net/home/groups/s/st/starobjects/htdocs/m2-repo/release

 </url>

 </repository>

 <site>

 <id>${distMgmtArtifactId}-site</id>

 <name>${distMgmtArtifactName} Site</name>

 <url>scp://shell.sourceforge.net/home/groups/${distMgmtArtifactSfDir}/htdocs/m2-site</

url>

 </site>

 </distributionManagement>

</profile>

For a local deployment to work the directories under /tmp should be exist:

• /tmp/m2-repo/snapshot and /tmp/m2-repo/release for the repositories

• /tmp/m2-sites for the various sites.

Deployment Prerequisites Prerequisites for Deploying Corporate Artifacts (from the
umbrella project)

Naked Objects' Sister Projects 1.0:
Developers Guide (0.1) 69

For a remote deployment to work requires an entry in the settings.xml for the named server id. The

umbrella project and all sister projects share the same server Ids for deploying code releases (as per

Chapter 10, Deploying a Code Release) but every umbrella project will define its own server for deploying

its site. In effect this means that the settings.xml will contain:

• starobjects-snapshot

for both the umbrella project and all sister projects' deployments of code snapshots

• starobjects-release

for both the umbrella project and all sister projects' deployments of code releases

• starobjects-site

for the umbrella project's site

• xxxobjects-site

for each sister project xxxobject's site

This is spelt out below

A.2. Prerequisites for Deploying Corporate Artifacts (from the umbrella
project)

All corporate artifacts from the umbrella project - corporate POM, Maven skin etc - are deployed to a

release repository so that they can be picked up by sister projects (see Section 6.2, “Defining the Corporate

Repository” for referencing the corporate POM, and in the section called “Skin” for referencing the Maven

skin).

When deploying remotely we need to provide the username and password for the following repositories

in the ~/.m2/settings.xml in order to automate the sftp:

<servers>

 <server>

 <id>starobjects-snapshot</id>

 <username>xxx</username>

 <password>xxx</password>

 </server>

 <server>

 <id>starobjects-release</id>

 <username>xxx</username>

 <password>xxx</password>

 </server>

 <server>

 <id>starobjects-site</id>

 <username>xxx</username>

 <password>xxx</password>

 </server>

</servers>

A.3. Prequisites for Deploying Sister Project Artifacts

There are similar prerequisites when deploying any of the sister projects that reference the corporate POM.

Deployment Prerequisites Prequisites for Deploying Sister Project Artifacts

70

Every POM defining artifacts being deployed must specify (or inherit) a number of properties. For

example, for Tested Objects we have:

<properties>

 ...

 <distMgmtArtifactId>testedobjects</distMgmtArtifactId>

 <distMgmtArtifactName>Tested Objects</distMgmtArtifactName>

 <distMgmtArtifactSfDir>t/te/testedobjects</distMgmtArtifactSfDir>

</properties>

To perform a remote site deploy for Tested Objects therefore also required the following is also needed

in ~/m2/settings.xml:

<servers>

 <server>

 <id>testedobjects-site</id>

 <username>xxx</username>

 <password>xxx</password>

 </server>

</servers>

Other sister projects likewise should follow the same pattern.

	Naked Objects' Sister Projects 1.0: Developers Guide
	Table of Contents
	Preface
	Part I. Building from Source
	Chapter 1. Prerequisite Software
	1.1. Command Line Software
	1.2. IDE

	Chapter 2. Manual Install of Maven Artifacts
	2.1. JIMI Jar File

	Chapter 3. Building Projects from Source
	3.1. Source Tree Hierarchy
	The 'main' module
	The 'support' module
	The 'testapp' module

	Part II. Contributing Changes
	Chapter 4. Coding Standards
	4.1. Checkstyle
	Maven Plugin
	Eclipse Plugin

	4.2. PMD
	Maven Plugin
	Eclipse Plugin

	4.3. Code Coverage (Cobertura and Emma)
	Maven Plugin (Cobertura)
	Eclipse Plugin (Emma)

	4.4. Eclipse Code Style
	Formatter
	Cleanup
	Save Actions

	Chapter 5. Templates and Utilities
	5.1. Eclipse Java Editor Templates
	JUnit 4 Templates
	JMock 2 Templates

	Chapter 6. Using the Corporate POM
	6.1. Defining the Corporate POM
	6.2. Defining the Corporate Repository

	Chapter 7. Writing DocBook Documentation
	7.1. Source Code Repository
	7.2. Editing the Documentation (using XMLMind)
	XMLMind XML Editor
	Images
	Tables

	7.3. Build the Documentation
	7.4. Deploying the Documentation

	Chapter 8. Writing Site Documentation
	8.1. Overview
	8.2. Source Code Repository
	8.3. Customizing the Site Descriptor (site.xml)
	Parent Module and Standalone Modules
	Project Name
	Version Position and Banner
	Powered By Logo
	Skin
	Body and Menu Items
	Link items (parent modules only)
	Menu item linking to Child Modules (parent modules only)
	Menu item linking to Module-specific Content
	Menu item linking to Reports (if source code)
	Menu items linking to Documentation (parent modules only)
	Menu items linking to Project Resources
	Menu items linking to Sister Projects
	Menu items linking to any other resources

	Child Modules
	Project Name
	Body and Menu Items
	Menu link referencing the Parent Module
	Menu item linking to Module-specific Content
	Links to Generated Reports
	Documentation Links (documentation child module only)

	8.4. Writing Additional Site Content
	File Formats
	APT Quick Start
	Sections and Sub-sections
	Fonts
	Lists
	Links and Figures
	Code Blocks (verbatim text)
	Other Code Elements

	8.5. Generated Reports
	8.6. Checking the Site by Deploying it Locally
	Prerequisites
	Performing the Local Deploy

	Part III. Release Process
	Chapter 9. Deploying a Code Snapshot
	9.1. Prerequisites
	9.2. Deploying a Snapshot Manually
	Deploying the main module
	Deploying the support module

	Chapter 10. Deploying a Code Release
	10.1. Pre-release Check List
	10.2. Releasing the Main Module
	Release Prepare (Dry Run)
	Release Prepare
	Deploying the Release
	Pull Down Tag & Build
	Deploy Module

	10.3. Support Module
	10.4. Deploy Site

	Chapter 11. Deploying the Site
	11.1. Prerequisites
	11.2. Deploying Remotely to Sourceforge

	Part IV. Building and Deploying the Corporate Artifacts
	Chapter 12. The Corporate POM
	12.1. Source Code Repository
	12.2. Build the Corporate POM
	12.3. Deploy the Corporate POM
	Prerequisites
	Deploy

	12.4. Using the Corporate POM

	Chapter 13. The Maven Skin
	13.1. Source Code Repository
	13.2. Build the Skin
	13.3. Deploying the Skin
	Prerequisites
	Deploy

	13.4. Using the Skin

	Chapter 14. The 'Main' Module (Docs & Site)
	14.1. Source Code Repository
	14.2. Building the Documentation & Site
	14.3. Deploying the Site

	Part V. Appendices
	Appendix A. Deployment Prerequisites
	A.1. How profile-based distribution management has been designed
	A.2. Prerequisites for Deploying Corporate Artifacts (from the umbrella project)
	A.3. Prequisites for Deploying Sister Project Artifacts

